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attractive future problem to find out the origin of the difference 
in chemiluminescence properties of 2, 7, and 8. 
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Reductive Cyclization of Ethynyl Ketones 
in the Construction of a Significant Tricyclic 
Intermediate for the Synthesis of Gibberellic Acid 

Sir: 

The gibberellic acid structure I1 has played a notable role 
in the generation of new reactions. The reductive cyclization 

H 

of 5-ethynyl ketones to methylenecyclopentanols2 provides an 
excellent example (2 —• 3). The reaction provides a direct 

approach to the methylenebicyclo[l.2.3]octanol system which 
is one of the most salient features of many of the gibberellins. 
We have therefore expended considerable effort to take ad­
vantage of the above cyclization and have used it in four dif­
ferent constructions of the tricyclic ketone 4, the first synthesis 
of which we achieved almost 7 years ago.3 We now outline 
three of the routes that we have followed to 4 and give the de­
tails of a fourth. 

The central assumption on which these syntheses were based 
was that 4 should be reached readily via the cyclization of the 
ethynyl ketone 5. The goal of our syntheses thus became its 
possible precursor, the diketal 6. Scheme I illustrates one of 

our early routes to 6. We have described previously4 the cya-
nohalo ketal cyclization of 7 to 8,5 mp 93-94 0C, and of 9 to 
10, mp 108-109 0C. The transformation of the angular cyano 
function into a propargyl group was carried out in the same 
manner in the hydrindan and decalin series. We describe it 
starting with the cyanohydrindan 8. Reduction of the nitrile 
8 (Dibal-H, toluene; hydrolysis with 5% acetic acid, 1 h at room 
temperature) gave the aldehyde 11, mp 67-69 0C, which then 
led to the ethynylcarbinol 12, mp 97-100 0C (lithium acety-
lide, THF-liquid NH3; 50% overall yield from 8). The desired 
net removal of the secondary hydroxyl group from 12 was then 
effected by formation of the mesylate (30% excess methane-
sulfonyl chloride-pyridine; 0 0C, 1 h; -20 0C, 48 h), followed 
by hydride reduction (NaAKOC^CH^OCHj^Kh, toluene, 
-60 to -20 0C, 48 h) to the crude allene 13 which was then 
isomerized (lithium diisopropylamide, THF, -20 0C, 6 h) to 
the propargyl diketal 6 and finally hydrolyzed (1:7 20% hy­
drochloric acid-methanol, 2.5 h) to the nicely crystalline 
propargylindandione 14, mp 107-108 0C (IR 2260,1745,1715 
cm -1). The decalindione analogue 15, mp 118-120 0C, was 
produced by the same sequence of steps.6 

Although these routes to the acetylenic diones 14 and 15 
were successful, they were rather lengthy (the route to 14 from 
dihydroresorcinol via 8 took 14 steps), and they were not en­
tirely stereospecific: the initial cis cyano diketals 8 and 10 were 
accompanied by ~5-8% trans isomers. 
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A somewhat shorter route to 14 (11 steps from 1,4-cyclo-
hexanediol) was developed as sketched in Scheme II. 

The process was quite effective (the overall yield of 14 from 
the indenone 16 was <~45%), but it was not entirely stereose­
lective because the Li/NH3 reduction of 16 gave ~6% unde-
sired trans isomer. 

We therefore eventually developed yet another—entirely 
stereospecific—sequence which, like the cyanohydrindan 
route, takes advantage of the very versatile synthesis of 4-
substituted 2-cyclohexenones which is now available9 (Scheme 
111). The readily obtained 17 (mp 55-56 0C, 83% yield by al-
kylation of 3-ethoxycyclohexenone with methyl 3-methoxy-
4-bromocrotonate) was treated with 3-butenylmagnesium 
bromide (THF, -78 0C) and hydrolyzed (1:4 30% perchloric 
acid-methylene chloride) to give 18 in ~50% yield. Intramo­
lecular Michael addition10 (sodium methoxide in methanol, 
room temperature), followed by decarbomethoxylation,11 then 
gave, in ~45% yield, the m-2,6-indandione 19, bp 165 0C (0.4 
mm). Transformation of 19 to the crystalline dione 14 was 
achieved in 35% overall yield by the following sequence: ke-

CH3O 

,X^Kn rH \ O1^N3C2H5 
1 OC2H5 C0,CH, z s 

CO2CH 
°<fcx 

19 

QCf> 22 -* 6 14 

J 
20 R • CH2CH2CH - CH 2 

21_ R= CH2CH - CHCH3 

talization to give 20, isomerization to 21 (4% potassium tert-
butoxide in Me2SO, 50 0C, 18 h, 85% yield); ozonolysis 
(methanol-THF-pyridine, -78 0C; followed by dimethyl 
sulfide cleavage) to the aldehyde 22 which was then converted 
into 6 by sequential treatment with chloromethylene tri-
phenylphosphorane (from lithium butyl in THF, —30 0C) and 
lithium diisopropylamide (—25 °C, 1 h). Hydrolysis of 6 then 
again gave the propargyldione 14, thus obtained in ~35% 
overall yield from the cis indandione 19. 

The crucial cyclization experiment to produce the tricyclic 
system 23 was performed on the monoketal 5, easily obtained 
in 75% yield from 14 in the expected fashion (selective re­
duction of the cyclohexanone carbonyl with NaBH4, ketali-
zation, and oxidation with chromic acid-2-pyridine). The 
monoketal 5 (IR 1712 cm-1) (6 g in 1 L of liquid NH3 con­
taining 150 mL of THF and 120gof dry ammonium sulfate) 
was cyclized at reflux temperature, by addition of potassium 
metal (10 equiv) onto a perforated surface from which it was 
leached by the refluxing liquid ammonia. The process gave, 
in 60-70% yield, the tricyclic dioxolane 23 which underwent 

acid hydrolysis (50% acetic acid) to octahydro-5-methylene-
6-hydroxy-[3a/3,6/3,8aa]-l//-3a,6-methanoazulen-2-one (4): 
mp 114—116 0C after crystallization from ether-pentane; IR 
1745, 903 cm"1; NMR 5 5.10 (t, 1 H), 5.25 (t, 1 H). 

The structure of 4 was further confirmed unambiguously 
by an X-ray structure determination12 which is discussed 
elsewhere, together with the direction of its kinetic enoliza-
tion. 
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An Unusually Simple Construction of Ring A of 
Gibberellic Acid 

Sir: 

It has been suggested1 that the observed transformation2 

of dihydrogibberellicacid (1) into its (more stable) epimer 2 
implies retroaldolization to the lactone aldehyde 3. Its subse­
quent (reversible) reclosure would then result in the-1 —» 2 
equilibration. 

The implication that the dihydrogibberellic acid system 
might thus be synthesized via the open aldehyde 3 has, in fact, 
been the basis of some interesting model studies.3 

The possibility of constructing the A ring area of gibberellic 
acid (4, R = H ) itself (as opposed to much less strained mod­
els)3 by such a process derives no support from the extensive 
chemistry of gibberellic acid. In contrast to its much more 
stable dihydro analogue 1, gibberellic acid is isomerized, even 
with 0.01 N NaOH solution at room temperature, to isogib-
berellic acid4 (cf. 4 —* 5). 

The above result does not.imply, however, that there might 
not be a kinetic path that would convert the open aldehyde 6 
into gibberellic acid, a transformation which would simplify 
the problem of total synthesis to such an extent that it appeared 
worth trying, in spite of the poor prognosis. 

The open aldehyde 6 was obtained from the well-known 
unsaturated ketone 7,5 starting with its cleavage (0.05 M 

H ° 2 C 0 - / > H 

CO2CH3 CO2CH3 

NaOH, 5 min at room temperature) to the unsaturated acid 
8:6mp 149-151 0C; 85% yield; NMR 5 5.76 (HA, d, / = 13 
Hz), 6.03 (H8, d , y = 13 Hz).7 

The acid was transformed into the desired aldehyde 6 by a 
three-step sequence: formation of the mixed anhydride (methyl 
chloroformate, triethylamine, THF, 15 min, room tempera­
ture; 90% yield); reduction (sodium borohydride, THF, 0 0C, 
30 min) to the allylic alcohol 9 (mp 145-146 0C; 80% yield; 
NMR 5 5.42 (H8, d, J = 12 Hz), 5.75 (HA, dd, 7 = 5,12 Hz)); 
oxidation (Mn02 in methylene chloride, 12 h at room tem­
perature) to the desired cis unsaturated aldehyde 6 (mp 
122-123 0C; 77% yield; NMR b 6.02 (HA, dd, J = T, 13 Hz), 
6.43 (H6, d, J = 13 Hz), 10.32 (Hc, d, J = 7 Hz)). 

After a number of attempts to effect base-catalyzed closure 
of 6, it was eventually found that catalytic (0.3 equiv, 0.01 M) 
sodium ethoxide in ethanol (5 min, 0 0C) led, with considerable 
stereospecificity, to methyl gibberellate. The latter predomi­
nated over its C1 epimer5b'8 (total isolated yield, 70%) by 
- 3 : 1 . 

Methyl gibberellate (4, R = CH3), identical (mixture 
melting pointing, spectra) with the natural substance, readily 
crystallized from the mixture. Alternatively, the mixture could 
be easily oxidized to the unsaturated ketone 7 in ~70% overall 
yield from the aldehyde 6, with Mn029 in methylene chlo­
ride.10 

It may be that the remarkable effect of the change from 
hydroxide in water to ethoxide in ethanol in suppressing the 
isogibberellic acid rearrangement is due to the fact that, in spite 
of appearances, the entity which undergoes rearrangement is 
actually the hydroxy acid salt (from lactone opening). It also 
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